Phosphatidic Acid (PA) can Displace PPARα/LXRα Binding to The EGFR Promoter Causing its Transrepression in Luminal Cancer Cells

نویسندگان

  • Madhu Mahankali
  • Terry Farkaly
  • Shimpi Bedi
  • Heather A. Hostetler
  • Julian Gomez-Cambronero
چکیده

The expression of the epidermal growth factor receptor (EGFR) is highly regulated in normal cells, whereas some cancer cells have high constitutive levels. Understanding naturally-occurring ways of downregulating EGFR in cancer cells was investigated. Phosphatidic acid (PA) or Nuclear Receptors (NR) PPARα/RXRα/LXRα, enhance EGFR expression, mediated by the promoter region -856(A) to -226(T). Unexpectedly, the combination of NRs and PA caused repression. PA induces a conformational change in the nuclear receptor PPARα (increase of alpha-helices at the expense of decreasing beta-sheets), as evidenced by circular dichroism. This represses the naturally-enhancing capability of PPARα on EGFR transcription. PPARα-overexpressing cells in the presence of PA > 300 nM or the enzyme that produces it, phospholipase D (PLD), downregulate EGFR expression. The reasons are two-fold. First, PA displaces PPARα binding to the EGFR promoter at those concentrations. Second, NR heterodimer-dependent promoter activity is weakened in the presence of PA in vivo. Since other genes considered (β-catenin, cyclin D3, PLD2 and ACOX-1) are also downregulated with a PA + PPARα combination, the transrepression appears to be a global phenomenon. Lastly, the reported effect is greater in MCF-7 than in MDA-MB-231 breast cancer cells, which could provide a novel basis for regulating excessive expression of EGFR in luminal cancer cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Phosphatidic Acid (PA) conveyor system of continuous intracellular transport from cell membrane to nucleus maintains EGF receptor homeostasis

The intracellular concentration of the mitogen phosphatidic acid (PA) must be maintained at low levels until the need arises for cell proliferation. How temporal and spatial trafficking of PA affects its target proteins in the different cellular compartments is not fully understood. We report that in cancer cells, PA cycles back and forth from the cellular membrane to the nucleus, affecting the...

متن کامل

A novel acylglycerol kinase that produces lysophosphatidic acid modulates cross talk with EGFR in prostate cancer cells

The bioactive phospholipids, lysophosphatidic acid (LPA) and phosphatidic acid (PA), regulate pivotal processes related to the pathogenesis of cancer. Here, we report characterization of a novel lipid kinase, designated acylglycerol kinase (AGK), that phosphorylates monoacylglycerol and diacylglycerol to form LPA and PA, respectively. Confocal microscopy and subcellular fractionation suggest th...

متن کامل

Phosphatidic Acid Induces Ligand-independent Epidermal Growth Factor Receptor Endocytic Traffic through PDE4 Activation

Endocytosis modulates EGFR function by compartmentalizing and attenuating or enhancing its ligand-induced signaling. Here we show that it can also control the cell surface versus intracellular distribution of empty/inactive EGFR. Our previous observation that PKA inhibitors induce EGFR internalization prompted us to test phosphatidic acid (PA) generated by phospholipase D (PLD) as an endogenous...

متن کامل

Ligand-Regulated Heterodimerization of Peroxisome Proliferator-Activated Receptor α with Liver X Receptor α

Peroxisome proliferator-activated receptor α (PPARα) and liver X receptor α (LXRα) are members of the nuclear receptor superfamily that function to regulate lipid metabolism. Complex interactions between the LXRα and PPARα pathways exist, including competition for the same heterodimeric partner, retinoid X receptor α (RXRα). Although data have suggested that PPARα and LXRα may interact directly...

متن کامل

In vitro elaboration Mutagenesis and cloning of the PA gene in Bacillus subtilis

Background: The immune antigen of Bacillus anthracis is a protein that can attach to the surface receptor of all human cells. At the surface of cancer cells, there is a receptor that activates the uPA (Urokinase plasminogen) that do not exist in normal human cells. Objectives: The aim of this study was changing the location of the attachment of the PA gene by a dir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015